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Kirchhoff difractals 
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Bulgarian Academy of Sciences, Institute of Electronics, bod. 'Tmigmdsko shoussee' 12, 
Sofia 1784. Bulgxia 

Received 14 February 1994 

AbStraU We study the angular properties of plane waves bacb t t e red  from random fractal 
curves and surfaces (diffractals). For this purpose we apply the physical optics (Kirchhoff) 
approximation without resorting to the high-frequency limit. The fractals of interest wz described 
by Gaussian random processes possessing power-law specva with and without a large-scale cut- 
off. We show that if the wavelength of the incident field is of order of the topothesy. small 
variations of its value may alter the angular pattern of the backsuttered power qualitatively. The 
most important prediction is a peak which Kirchhoff diffrachls exhibit under specific conditions 
at 3 particular angle of incidence. The position of the peak is linked to the dimension of 
the topothesy and provides a good possibility for exprimenld measurrment of these intrinsic 
parameters of the fractal surfaces. The effect of large-scale cut& which determines the RMS 
height of the s u m  is also studied. 

1. Introduction 

We are concemed in this paper with scattering of scalar waves by Gaussian random 
rough curves and surfaces which possess irregularities over a wide range of scales. More 
specifically, we consider isotropic surfaces described by simple power-law roughness spectra 

Sdq) = Aiq-' (1.1) 

with and without large-scale cut-off. Above, A ,  is the spectral constant and the parameter (Y 

is assumed to take values in the interval & c a e &+2; 4 denotes the usual topological 
dimension, & = 1 for curves and DT = 2 for surfaces; q designates either Ikl, for 4 = 1 
or I l c ~ l  (]El = ( k x , k y ) ) ,  for DT = 2. These types of spectra are known to give rise to 
fractal curves and surfaces, i.e. curves and surfaces with hierarchical smcture characterized 
with-statistical self-similarity [I]. Since the publication of [2]. fractals have been the focus 
of interest for various physical disciplines, proving to be pertinent models for a variety 
of physical phenomena; the reader may refer, for example, to [3]. In particular, the type 
of fractal models considered here apply to a wide class of surfaces; see the experimental 
data collected in: [4] related to terrain and some man-made surfaces; [5]-ocean surface; 
[6]-ocean bottom; ['/]-the surface of the Moon; p3]-fracture surfaces etc. 

In the next section we discuss, in detail, the structure functions associated with (1.1) 
and the parameters which govem their behaviour: 'these are the Hausdorff-Besicovitch 
dimension [9], the topothesy 141 and the R M S  height. The discussions emphasize the insight 
which fractal geomew provides for understanding the properties of the random surfaces. 

Studying the scattering by fractal surfaces, similar to Berry and Blackwell [IO], we 
employ the physical optics, or Kirchhoff tangent plane approximation. (Waves 'that have 
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encountered fractals have been called diffractals by Berry; hence, the term Kirchhoff 
diffractals used as the title of this paper.) However, rather than an incident Gaussian 
beam we consider an incident plane wave, and rather than the late-time echo tail decay 
we focus on the angular dependence of the scattered intensity. Another difference is our 
assumption that both the source and the receiver reside in the far, Fraunhofer zone. It is 
argued in section 3, that the conditions ensuring the Fraunhofer zone approximation are 
usually satisfied if the wavelength of the diffractal is sufficiently small. On the other hand, 
if the wavelength is not small, the far zone approximation is still a reasonable assumption 
provided the dimension of the surface does not exceed a specific value. 

Since the high-frequency approximation is not applicable to scattering from fractal 
structures [I ,  111, for the evaluation of the scattering cross section we employ an elaborated 
combination of numerical and asymptotic techniques. The technique allows evaluation of 
the scattering cross section for any set of surface and scattering parameters. Details of this 
technique, not discussed in our earlier publications, are presented in section 4. 

In section 5, we present numerical results which reveal some of the characteristics of 
the considered diffractals and the conditions under which the diffractal regime comes into 
effect. Special attention is paid to wavelengths close to the surface topothesy. A new 
critical type behaviour, which we call diversification of the angular diffractal patterns is 
predicted. The impact of the large-scale cut-off is also studied in this section. A summary 
of the obtained results is presented in the last section. 

0 I Yordanov and K lvanova 

2. Random curves and surfaces with power-law spectra 

We shall refer to type I, or ‘pure’ fractal surfaces, if the surface has a spectrum of the form 
of (1.1) with no spectral cut-offs, and to type Il surfaces, for spectra with an absolutely 
sharp large-scale cut-off k,; i.e. 

It should be stressed that by considering roughness spectra of the form (1.1) and (2.1) we 
actually restrict our study to isotropic curves and surfaces. 

From the standpoint of fractal geometry, the most important characteristic of both types 
of surfaces is the Hausdorff-Besicovitch, or fractal, dimension D. It has been shown [9, I ]  
that the dimension of a type I fractal curve is related solely to the exponent 01. This is 
done by using the ‘potential’ definition of the fractal dimension [Z]. By calculating the 
energy of a uniformly charged surface defined over a circular region, the same can easily be 
demonshated for the case of DT = 2, for both type I and II surfaces. Denoting the excess 
of the fractal dimension over the topological dimension by D‘ = D - 4, the relation which 
links the fractal dimension to 01 can be written in the following unified for both & = 1 
and DT = 2 form 

D’ = (& + 2 - 01)/2. (2.2) 

Clearly 0 < D’ c 1 when DT .c 01 .c DT + 2. For the assumed values of the spectral 
exponent, the Fourier transform of 8, is a divergent integral; thus, the correlation function 
does not exist. Similarly, the RMS height, and therefore, the RMS slope are infinity. 
However, the so-called structure, or mean-square increment (MSI), function defined by 
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 AI(^) = ((((to + <) - ((f~))~) (the broken brackets denote ensemble average) does exist 
and is given by [ I ]  

(2.3) 

Here denotes ( X I  in the case of DT = I and (T I (  (TI = ( x ,  y)), in the case of 4 = 2. 
The important parameter r, , termed topothesy, is by definition, the distance over which the 
MSI function equals r:. The following relationship expresses the topothesy in terms of the 
parameters AI and D' (or equivalently in AI and a): 

2D' Z(1-D') AI($) = TI F 

As we shall see in the next sections, the parameter r, plays a key role in assessing 
the characteristics of the waves that have encountered fractals. At both limiting cases 
D' -+ 0 and D' -+ 1 called marginal and extreme fractals, respectively, the topothesy 
tends to infinity. Another special case is D' = 4, called, in analogy with the Brownian ' 
motion, Brownian fractal surfaces, for which (2.3) and (2.4) simplify to A,(.$) = SI.$, 

T~ = AI/&-'. The dependence of r, upon the dimension D' is graphically illustrated in 
[12, 131. 

Since the behaviour of 4 ( q )  and SI&) for large q are identical, the MSI functions 
AI($) and A&) must behave identically at zero. Indeed, calculating the structure function 
corresponding to (2.1) (see appendix A) one obtains 

A d $ )  = rn 2D' F (2.5) 

where TI, is given by the same expression (2.4); hence, thereafter we suppress the subscripts 
of the topothesy. Equation (2.5) involves the hypergeometric function 1F2; since it is an 
entire function, (2.5) defines A,($) for arbitrary $. At + 0, IFZ approaches unity and 
therefore All($) - A I ( $ ) ,  as 5 -f 0. Type II spectra have finite RMS height h and infinite 
RMs slope. In terms of the spectral parameters, the RMS height reads 

+ 2hZ [ 1 - 1 FA, D T / ~ ;  -k:$'/4)] 

As expected h -+ 00 as k, + 0. Due to high-frequency divergence, the RMS height grows 
unbounded as Hausdorff-Besicovitch dimension approaches the extreme fractal case. 

After sharp increase for small and intermediate 6, type I1 structure functions approach 
2hZ at infinity in an oscillatory fashion (the amplitude of the oscillations decrease with 
increasing D'). The leading asymptotic term of An(6) for large $ is given by 

where Jl is the first-order Bessel function. The last expression provides another 
characteristic length-the distance which separates the scales of fractality from the scales 
of 'geography' [IO], From (2.7), the type II structure function is close to 2h2 for values of 
its argument much greater than L, where 

L = 2,$1-4)/3(1 - 0')(4-DT)Pk,-l . (2.8) 
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Figure 1. Simulated random fractal profile for parameters dimension D = 1.25. topolhesy 
r = IOAx, RMS height h = 50Ax. The discretization step is Ax = I (arbitmy units). the total 
number of points is Np = 8192. In (a) the profile is drawn wilh resolution 1OOAx; in (b) with 
resolution Ax; in (c )  a magnified poltion of the surface consisting of the first 200 points is 
shown. 

Graphs of An(:) labelled by different values of the fractal dimension are drawn in [IZ]. 
A physically realistic spectrum must also have a small-scale cut-off kb.  The presence 

of such a cut-off makes a surface with a finite domain power-law spectrum an ordinary, 
rectifiable [14] surface (when viewed at very fine resolutions). ?he Hausdorff-Besicovitch 
dimension for such surfaces equals the topological dimension, D = &. Nonetheless, the 
surfaces exhibit an approximate self-similarity over a wide range of horizontal distances 
[E]. The Hausdorf-Besicovitch dimension is then substituted by the similarity dimension 
DS [16], whose excess over DT is given to agood approximation by (2.2). Hence, in most of 
the cases, the effect of the small-scale cut-off can be minimized by choosing the wavelength 
of the incident field well within the self-similarity range. Only when 01 is close to &, the 
existence of small-scale cut-off essentially changes the overall self-similar behaviour [ 151, 
and in this case, one should expect essential impact of kb on the diffractal properties as 
well. This impact, however, will not be pursued here. 

We conclude this section with illustrations of power-law surface realizations which 
provide an insight into the expected diffractal properties. The surfaces are simulated using 
an algorithm described in [17, 181 choosing discretization step of Ax = 1 (in arbitrary 
units) and total number of points Np = 8192. For the surface in figure I ,  we prescribed 
D = 1.25, s = lo&, h = 50A.x. In figure I@) the surface is drawn with a resolution 
of lor. At this resolution the fractal surface appears similar to an ordinary, non-fractal 
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Figure 2. The same as figure 1, except that D = 1.75 and h = 2OA.r. 

surfacesee figure 2 in [19]-with an effective slope defined by s a  = f i h / L ,  where L 
is given by (2.8). For the parameters of figure 1, = 0.188. Therefore, when illuminated 
by a wave with wavelength A >> t ,  the returns from a fractal surface should be qualitatively 
similar to that of a non-fractal one. In figure I (b)  the same surface is drawn with resolution 
0 . 1 ~ .  A great number of new rough patches are seen whose average size is of order of r; 
cf with the graphs of the Weierstrass-Mandelbrot fractal function given in [20]. If A 5 t 
the contribution to the scattered power from small scale roughness should be dominant. 
The mean slope of this roughness is visibly greater than 0.188, see figure l(c), in which 
a magnified portion consisting of the first 200 points is shown. (We should note, that 
the computer realizations actually do have a small-scale cut-off demanded by the Nyquist 
frequency, in our case kb  = E . )  On the other hand, according to the predictions of the 
geometric optics, the backscattered power from a Gaussian correlated surface with a steep 
slope s > m, exhibits a peak at a certain angle of incidence. Thus, a similar peak 
should be expected in the backscatter from a fractal surface power for A 5 t .  

Figure 2 shows realization of a random fractal surface with the same parameters except 
that D = 1.75 and h = 20. In this case, at resolution lor-figure 2(u&the effective slope 
is S,H = 0.056. However, at resolution 0.1~. the fractality scales are rougher-figure 2(6), 
and steeper-figure 2(c). Therefore, the maximum of the backscattered power should be 
expected at about grazing incidence. 
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3. Physical optics approximation 

Both classical methods in the theory of scattering by rough surfaces-small perturbations and 
Kirchhoff approximations-have been applied to fractal surfaces. The Born approximation 
has been used by Po-zen Wong [21] to derive the asymptotic form of the Fourier transform 
of the scatter from porous solids with fractal interface intensity. However, there are no 
known criteria for validity of the ordinary perturbation techniques [22, 231 when applied 
to scattering from fractal surfaces. As a recent Monte Carlo simulations show [24] even 
in  the case of single-scale Gaussian correlated one-dimensional surfaces, the requirement 
d kh  << 1 (k  is the wavenumber of the incident field) does not suffice to ensure the 
validity of the first-order perturbation approximation. (It must be supplemented with a 
certain small-comelation-length condition.) 

Since the Kirchhoff approximation is a heuristic rather than an asymptotic method (based 
on the local tangent-plane approximation), the question of its applicability for description 
of difiactal scattering is even more difficult to address. at is true that the Kirchhoff 
approximation has also been shown to be the zero-order iterative solution of the surface 
field integral equation 125, 261. However, the conditions for convergency of the iterative 
series are not known, and moreover, even what parameter should be considered as small for 
this expansion depends on the statistical parameters of the surface [27, 281.) To appreciate 
the difficulties in defining an appropriate parameter, controlling the accuracy of the Kirchhoff 
approximation, the reader may refer to the paper by Thorsos 1191 where the widely accepted 
criteria-large radius of curvature compared to the wavelength [29]-was tested in Monte 
Carlo simulations, again for Gaussian correlations, and found inappropriate. Instead, the 
criterion I,,, > A has been suggested for all scattering directions away from grazing; 1, 
is the correlation length and h is the wavelength of the incident field. (See also, [28] where 
detailed criteria based on a variational correction to the Kirchhoff approximation are derived. 
In these criteria l,,,/A is involved as a key parameter.) By analogy, one may expect that for 
wavelengths of order or less than topothesy the Kirchhoff diffractals, at least qualitatively, 
would give a proper picture of the scattering. On the other hand, if the wavelength is much 
greater than topothesy, the scales of fractality, as we shall see, have negligible effect on the 
scattered field. In this case the surface can be regarded as a non-fractal rough surface with 
criterion for validity of the Kirchhoff approximation L / A  > 1, see equation (2.8). 

Let us also note the studies [7] and [30] where the scattering from power-law surfaces 
is considered in the framework of the two-scale model-a combination of physical optics 
and perturbation expansion [22]. Finally, the problem of scattering from type I surfaces for 
the particular case of fractal dimension D = 2.25 has recently been treated in an approach 
that requires the surface slopes to be small [31]. 

Before proceeding further, we elaborate on the conditions validating the far (Fraunhofer) 
zone approximation adopted throughout this paper. For non-fractal rough surfaces these 
conditions are obtained, for example, in [32] and studied in detail in [33]. According to 
the analysis carried out for fractal surfaces in  [34], the sourcelreceiver is located in the far 
zone if its distance R from the fractal surface satisfies the condition 

0 I Yordanov and K lvanova 

, 1 \D'liI-D'l  
I 

R >> RF = 6 ~ 0 ~ 0 ~  (3.1) 

where 6 is the size of the illuminated area and 0, is the angle of incidence measured 
from the vertical, z-axis. Independent of the value of the fractal dimension, the condition 
(3.1) is easily satisfied provided A < 27rr cos0,. In the case of longer probing waves, the 
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Fraunhofer-type scattering is in effect for surfaces having dimensions for which 

where the dimensionless topothesy 5 = kr is introduced. 
Assuming that inequality (3.1) holds, one can make use of the definition of the 

dimensionless incoherent scattering cross section per unit area per unit scattered solid angle, 
see, for example, [35, 191, 

The above expression pertains to a scattering from a surface with infinite extent. The 
wavevector of the incident plane wave is ki = k(sinB,, 0, -cos@), the direction of the 
scattering is determined by k, = !+in 0, cos p, sin 0, sin p, cos Os)( by definition p = 
(41,  qz) = ki - k,. (We remark that for type I surfaces the second term in the integrand 
of (3 .3 t tha t  is the coherent part of the intensity-vanishes.) Making use of the isotropy 
of the surface, the expression for the scattering cross section is brought to the following 
convenient form: 

a(k" ki) = 

(3.4) 

where the (dimensionless) parameters @ = q / k ,  and p = 14~l/(14~15D')1~('-D') are 
introduced. The dimensionless type I and type ll structure functions are defined by 
&(U) = uZ(l -D' )  and &,(U) = + 2q:h2 (1 - 1Fz (D' - I ;  D'. &/2; -@?/4)), 
respectively, with t, = L,/(14~i,19D')'/"-D'1. Equation (3.4) can be numerically implemented 
to yield values of u(ki, k,) for any set of scattering and surface statistical parameters, except, 
as we shall see later, those for which the parameter p is large. For the case of pure fractal 
surfaces, however, it is instructive to develop a series representation of the scattering cross 
section. This representation, as well as an asymptotic expansion of (3.4) for large p ,  are 
obtained in the next section. 

4. Series representations and asymptotic expansions of the scattering cross section 

The key to the series representation of o(k,, ki) for type I surfaces is the integral 

(4.1) 

Two cases should be distinguished. If D' c f ,  a convergent series is obtained from (4.1) 
by simply expanding the oscillatory functions and integrating term by term. Referring, for 
example, to [36] the result is 
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The case D' 
complex integral 
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f requires more effort. Let us take, for example, DT = 2 and consider the 

(4.3) 

with a branch cut along the positive real axis. The integrand of (4.3) involves the first 
kind, zero-order Hankel function H , f ) ;  the values of 22('-D') are defined in such a way that 
B ( p ,  D'; 2) is obtained by taking the real part of (4.3). Using this, a series representation is 
developed by deforming the integration contour to the positive imaginary axis and expanding 
the exponent. A similar technique can be applied for topological dimension D? = I ,  render 

which is convergent for D' > 4. We note, that in a different physical context, a series with 
essentially the same structure has been obtained by Berry and Blackwell 191. and also for 
the particular case of D' = 4 in [31]. 

In practice. the evaluation of B ( p ,  D'; DT) from the series representation is limited by 
the computer precision. The 'radius of effective numerical convergence' for (4.2) can be 
prescribed by 

where q = $-  D', and M is the maximum number of digits not rounded off by the computer. 
Alternatively, for D' = f + q, 0 c q < $ the series (4.4) converges numerically provided 

(4.6) 

The series representations are computationally more efficient and reliable than the direct 
numerical integration of (3.4), provided the surface dimension is not close to 4 + f. If 
v < 1, i.e. the surface is similar to a Brownian fractal, the intervals of convergence are 
the narrowest; also the rate of convergence of (4.2) and (4.4) is extremely slow. On the 
other hand, for the cases in which (4.2) and (4.4) are not convergent4.e. for D' > $ and 
D' < i, respectively-they represent full asymptotic expansions of B ( p ,  D'; Dr). Thus, 
in the actual evaluation of the scattering cross section, the representation (4.2) can be used 
for small p whilst (4.4) for large p independent of the value of the fractal dimension D .  
When B ( p ,  D'; DT) is calculated from an asymptotic series, the so-called optimal truncation 
rule [37] has proved, in our experience, to be always reliable. The absolute errors of the 
asymptotic summation are given by 

(4.7) 
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for equation (4.2). and 

(4.8) 

for equation (4.4). As it is seen from (4.Q for fixed q and large values of p ,  the error of 
the asymptotic summation is reasonably small allowing the handling of this most difficult 
numerical integration case, see below. 

The case of pure Brownian fractal curves and surfaces permits an exact quadrature of 
(4.1) leading to the following simple expression: 

(4.9) 

We remark that for D' = 4, both (4.2) and (4.4) can formally be summed up with a result 
(4.9). 

We now turn to the problems involved in the practical evaluation of (3.4) for type I1 
surfaces. For this purpose we use numerical quadrature for small and intermediate values of 
p .  To control the error, we break the interval of integration into subintervals in which the 
integrand is either positive or negative. (In the case of DT = 2, these intervals are defined 
by ( jo , " ,  jo,"+I), where jo,,, and jo,,,, are two consecutive zeroes of the Bessel function Jo. 
As is often the case, large numbers of subintervals have to be accounted for; to calculate 
jo,n for large n, the asymptotic expression for the Zeroes has been used [38].) It has been 
observed that series generated by the values of the integral over the subintervals behaves, 
in general, as an asymptotic series. Hence, the summation is canid  out using emor control 
rules of asymptotic series [37]. 

With increasing p .  the numerical error becomes intolerable. Special difficulties present 
the case of extreme fractal surfaces, when the rapid oscillations are imposed on an extremely 
slow decrease of the non-oscillating factors in the integrand of (3.4). To handle these cases, 
we develop a full asymptotic expansion of U&, ki) using p as a large parameter. 

When p is large the main contribution to the integral comes from the vicinity of 
U = 0. However, no ordinary asymptotic technique can be applied for the estimation 
of this contribution. The remedy is a special technique developed in [39]. It employs the 
Parseval relation for the Melin h-ansforms of the oscillating and non-oscillating factors of 
(3.4). Not presenting the long and rather cumbersome calculations, we write down only 
the final expansion. If for some integer M an error less than (p/2)-2"-D"M is desired, the 
asymptotic form of the scattering cross section for large p reads 

A Y A $ .  . . A$r((DT + p)/2) 
X 

O<kl+ ...+ kM<m 

(4.10) 

where 
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a n d p = p ( m , k l .  ..., kN) = Z ( l - D ' ) ( m - k i - . . . - k  N)  + ZxL, Ikr. The second 
summation in (4.10) is over all possible sets of integers ki , . . . , k N  whose sum is less than 
m. Complying with the error bound, the sets kl, . . . , k, for which z 2(1 - D')M must 
be suppressed. Note that the leading order in (4.10) does not depend on the RMS height and 
is identical with the large p leading order for type I surfaces (obtained by accounting for 
the term with n = 1 in (4.4) only). Hence, with increasing p the predictions of (34) are 
insensitive to the value of largest scale. 

To conclude this section, we stress that, in our experience, the evaluation of quantities 
which characterize the diffractal properties, calls for a careful numerical work and often 
accounting for pertinent full asymptotic expansions. 

0 I Yordanov and K Ivanova 

5. Backscattered diffractal patterns 

We begin our expose of the properties of the backscattered Kirchhoff diffractals with 
the main finding of this work. Figure 3 shows backscattering cross section. u&)- 
equation (3.4) with 8, = -@,-as a function of the angle of incidence for three values 
of the wavelength, all of them close to the topothesy's length. The full curves represent 
uB(Si) for type I1 surfaces with hlh  = 1.59, whereas the dotted curves correspond to 'pure 
diffractals', i.e. with h lh  = 00. The fractal dimension used to produce the data for figure 1 
is D = 2.3. For backscattering, large angles of incidence lead to large values of p ,  and as 
expected, the values of UB for type I and type I1 surfaces merge with increasing Si. The first 
two curves are plotted using dimensionless topothesy of Q = 0.2 ( r / h  = 0.032) and have 
a form which is typical for scattering from non-fractal surfaces: a maxima at 0, = 0 and a 
minima as the angle of incidence approaches grazing. When the wavelength is decreased 
below a specific value, the backscattered pattern change qualitatively; namely, the curves 

3 
0 
2 
m m 
0 
h 
0 

2 .- 
h 
0 

m 
0 
s 

8 m 
P 

2- 

Type I . . . . .  
- - Type I1 

- D = 2.3 k7 = 0.32 

......... - 
1- 

0 1  , , , , , , , , , ~ , ~ , , 1 , ,  

0 30 80 

incidence angle [deg] 

Figure 3. Backcafering diffncul paterns for dimension of the s$ace D = 2.3. The full 
curves correspond 1: type I 1  surfaces with dimensionless RMS heighf h = kh = IO. the dotted- 
to type 1 surface-h = m. The values of fhe dimensionless topothesy i = kr used 10 produce 
thc different curves are given inside fhe figure. 
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Figure 4. Cosine of 8i,.a versus the dimensionless topothesy for type I surfaces and ( a )  
DI = I .  (b)  DI = 2. The graphs correspond to excesses of the fractal dimension of 
D' = 0.1,0.2,0.3.0.4.0.5, and 0.6, respectively from leR to right. 

marked with Q = 0.32 ( r / h  = 0.051) exhibit minima at normal and grazing incidence, and 
mild maximum at about e, = 20" for type II surfaces, and at about 8, = 28" for the pure 
fractal case. With further decrease of the wavelength the peak becomes more pronounced; 
see the pair of curves corresponding to 3 = 0.6 (s/ i  = 0.095). We shall refer to this 
effect as diversification of the angular diffractal patterns. Thus, within the physical optics 
approximation, the scales of fractality manifest themselves (i.e. the scattering is effectively 
in the diffractal regime) only if the incident wavelength is sufficiently smalt. The simulations 
and the accompanying discussion presented at the end of section 2, indicate that the latter 
may not be an aftermath of the considered approximation. The small impact of the fractality 
scales on the propagating wave when the wavelength is large has  also been observed in the 
problem of transmission trough Cantor-like slab [40]. We emphasize that this latter problem 
is treated with no approximation involved. 

Since U depends on the topothesy through 2-D'/c1-D'),  see (3.4), for type I surfaces and 
fixed D', the position of the peak is determined by the values of ? alone. Figures 4(a) 
and 4(b) show C O S B , ~ ~ ~ ~  versus the dimensionless topothesy ?, for 4 = I and 4 = 2, 
respectively. The curves correspond to: D' = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively 
from left to right. The onset of the curves marks the critical value ?c of the dimensionless 
topothesy for which the peak occurs. In particular. if D' << 1 (marginal fractals), using D' 
as a small parameter, one obtains 

which is valid to the leading order in D' and values of eia& away from normal incidence. 
The expression (5.1) appears similar to the analogous expression obtained using geometric 
optics for a Gaussian correlated surface with a steep RMS slope s, namely, PD' substituted 
by s. However, the physical content of (5.l), being wavelength dependent, is different and 
furnishes an experimental possibility for measuring t for marginal fractal surfaces. 

Another special case are surfaces with dimension close to that of the Brownian fractal. 
Writing D' = f 5 i l ,  and using 7 as a small parameter, for both DT = 1 and DT = 2, one 
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Figure 5. Backscattering diffractal panems For pure fractal surfaces with D = 2.7, The full 
curve corresponds to i = 0.8, the long dashes to 0 = 0.9, shoe dashes to i = I .2, and the 
dotted curve to i = 1.4. 

This formula is a good approximation only for q .c 0.05; for D' = 4 it is exact and thus 
for Brownian surfaces 2, = I / &  Again, the position of the peak depends on the value of 
the wavelength. 

With increasing D', the interval of f-values for which the peak exists becomes narrower 
and eventually disappears. The latter is illustrated in figure 5 where examples of diffractal 
angular patterns, type I surfaces are shown for D = 2.7. As we shall see in a moment 
the scattering from type I and type II surfaces are practically identical for this dimension. 
The full curve is drawn using f = 0.8, the long dashes represent f = 0.9, short dashes- 
f = 1.2, and dotted curve-? = 1.4. For these and higher values of the dimension, the 
diversification of the diffractal patterns manifests into a change from curves having maxima 
at zero and minima at n 12 to curves with reversed extrema. 

Finally, we study the quantitative difference between the scattering form type I and type 
I1 surfaces. As already noted, this difference is negligible for large 0,. Figure 6 shows the 
rate of decreasing of the relative difference (U;' - U;)/.; with increasing dimensionless 
height, for fixed OL = 20" and f = 0.4. The dimensions used to produce the curves are 
D = 2.1, 2.2, 2.3,2.4, and 2.5; see the corresponding labels inside the figure. It is seen that 
the relative difference is significant, in some cases exceeding loo%, for fractal dimensions 
not much higher than DT. With increasing D. (U;' - uA)/uA rapidly decreases and for 
about D' > 0.4 it becomes negligible. To understand this, at first surprising fact, we rewrite 
&-see the argument of the hypergeometric function, equation (3.4)-in terms of D', 4, 
8, and f i :  
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Figure 6. Relative difference behveen the backscattering cross section for type I and type II 
surfaces versus the dimensionless RMS height for fixed 01 = 20' and i = 0.4. The various curves 
correspond to fixed fractal dimensions: the values of the latter arc given inside the figure. 

Since the expression in the brackets is generally < 1, i: << 1 for D' > 0.4. Hence, IF* E 1 
and &(U) Z u * ( I - ~ ' )  within the essential for the integration of (3.4) interval. On the other 
hand; if, as is usually the case for small and intermediate Oj, I; > 1/2cosOj the second 
exponent in the integrand of (3.4) is small. Therefore, according to the physical optics 
approximation, the scattering from type I and type ll surfaces are closely similar for large 
and intermediate values of the fractal dimension excess. 

6. Conclusions 

We have studied some aspects of wave scattering from fractal rough surfaces. This problem 
constitutes an important ex-qple of so-called diffractal regime in wave theogy [ 11. Both pure 
fractal, i.e. surfaces having unbounded hierarchy of irregularities, and fractal surfaces with 
a largest possible scale have been considered. In the latter case an exact representation for 
the mean-square increment function is given. Within$e framework of the physical optics 
(Kirchhoff) approximation, we have developed an elaborated combination of numerical and 
asymptotic technique which allows the evaluation of the incoherent scattering cross section 
(a quantity proportional to the second central moment of the scattered field) for any set of 
surfacegd scattering parameters. Using this technique, we have studied in detail the case 
of backscattering only. The emphasis is on the insight which the fract$ parameters, such 
as dimension and topothesy, provide for analysing the diffractal phenomena. 

The main finding is an effect of diversification of the angular difkactal patterns which 
takes place for wavelengths &%e incident field below some critical value. In particular, 
the angular dependence of the backscattering cross spction exhibits a peak at certain angles 
of incidence. The position of this peak and the cr;t[$I,wavelength are linked to the fractal 
dimension and the topothesy, and if confirmed experimentally, should furnish a pre%e 
method for measuring these intrinsic parameters of.hatural and man-made rough surfaces. 
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The peak occurs for fractal dimensions up to about 2.65; above this value, when the diffractal 
regime is in effect, the backscattered intensity has a maximum close to grazing incidence. 

We have also quantified the impact which the largest scale of the surface has on the 
difiactal properties. For large angles of incidence this impact is negligible. For small 
and intermediate angles the effect is important onIy for relatively small excess of the fractal 
dimension over the topological one and decreases with increasing RMs height of the surface. 

0 I Yordanov and K Ivanova 
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Appendix. Type II mean-square increment function 

In this appendix we sketch the steps leading toward expression (2.5). The derivation is 
based on the speceal representation of the MSI function [41]: 

Substimting (2.1) in (Al) (and employing polar coordinates for 4 = 2), (Al) can be 
brought to the following form: 

where 4 is either 1x1 or 1 ~ ~ 1 .  Next, the integral in (A2) is represented as 1; = l," - J,".. 
The first of these integrals is a representation of the MSI function for the pure fractal case; 
hence, it gives Al(e)-equation (2.3). The second integral is beated in the following 
manner: the oscillatory functions in the integrand are expanded in powers of k a t  and the 
resulting series are integrated term-by-term; using the properties of the gamma function and 
the definition of the hypergeometric function, An(() can be rearranged in the form of (2.5). 
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