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Kirchhoff diffractals

O I Yordanov and K Ivanova

Bulgarian Academy of Sciences, Institute of Efectronics, boul. ‘Tzarigradsko shoussee” 72,
Sofia 1784, Bulgaria

Received 14 February 1994

Abstract. 'We study the angular properties of plane waves backscattered from random fractal
curves and surfaces (diffractals). For this purpose we apply the physical optics (Kirchhoff)
approximation without resorting to the high-frequency limit. The fractals of interest ara described
by Gaussian random processes possessing power-law spectra with and without a large-scate cut-
off. We show that if the wavelength of the incident field is of order of the topothesy, smail
variations of its value may alter the angular pattern of the backscatterad power qualitatively, The
most important prediction is a peak which Kirchhoff diffractals exhibit under specific conditions
at a particular angle of incidence. The position of the peak is linked to the dimension of
the topothesy and provides a good possibility for experimental measurement of these intrinsic
parameters of the fractal surfaces. The effect of large-scale cut-off which determines the rMS
height of the surface is also stodied.

1. Introduction

We are concerned in this paper with scattering of scalar waves by Gaussian random
rough curves and surfaces which possess irregularities over a wide range of scales. More
specifically, we consider isotropic surfaces described by simple power-law roughness spectra

Sig) = Aig™ (1D

with and without large-scale cut-off. Above, A is the spectral constant and the parameter o
is assumed to take values in the interval Dy < & < Dy+2; Dy denotes the usual topological
dimension, Dt = 1 for curves and Dt = 2 for surfaces; g designates either |k, for Dy = 1
or |k | (ks = (k«, ky)), for Dy = 2. These types of spectra are known to give rise to
fractal curves and surfaces, i.e. curves and surfaces with hierarchical structure characterized
with ‘statistical self-similarity [1]. Since the publication of [2], fractals have been the focus
of interest for various physical disciplines, proving to be pertinent models for a variety
of physical phenomena; the reader may refer, for example, to [3). In particular, the type
of fractal models considered here apply to a wide class of surfaces; see the experimental
data collected in: [4] related to terrain and some man-made surfaces; [5]—ocean surface;
[6]—ocean bottom; [7]—the surface of the Moon; {8]—fracture surfaces etc.

In the next section we discuss, in detail, the structure functions associated with (1.1)
and the parameters which govern their behaviour: ‘these are the Hausdorff~Besicoviich
dimension [9], the topothesy {4] and the RMS height. The discussions emphasize the insight
which fractal geomeiry provides for understanding the properties of the random surfaces.

Studying the scattering by fractal surfaces, similar to Berry and Blackwell [10], we
employ the physical optics, or Kirchhoff tangent plane approximation. (Waves ‘that have
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encountered fractals have been called diffractais by Berry; hence, the term Kirchhoff
diffractals used as the title of this paper.) However, rather than an incident Gaussian
beam we consider an incident plane wave, and rather than the late-time echo tail decay
we focus on the angular dependence of the scattered intensity. Another difference is our
assumption that both the source and the receiver reside in the far, Fraunhofer zone. It is
argued in section 3, that the conditions ensuring the Fraunhofer zone approximation are
usually satisfied if the wavelength of the diffractal is sufficiently small. On the other hand,
if the wavelength is not small, the far zone approximation is still a reasonable assumption
provided the dimension of the surface does not exceed a specific value.

Since the high-frequency approximation is not applicable to scattering from fractal
structures [1, 11], for the evaluation of the scattering cross section we employ an elaborated
combination of numerical and asymptotic techniques. The technique allows evaluation of
the scattering cross section for any set of surface and scattering parameters. Detaiis of this
technique, not discussed in our earlier publications, are presented in section 4.

In section 5, we present numerical results which reveal some of the characteristics of
the considered diffractals and the conditions under which the diffractal regime comes into
effect. Special attention is paid to wavelengths close to the surface topothesy. A new
critical type behaviour, which we call diversification of the angular diffractal patterns is
predicted. The impact of the large-scale cut-off is also studied in this section. A summary
of the obtained results is presented in the last section.

2. Random curves and surfaces with power-law specira

‘We shall refer to type I, or ‘pure’ fractal surfaces, if the surface has a spectrum of the form
of (1.1) with no spectral cut-offs, and to type II surfaces, for spectra with an absolutely
sharp large-scale cut-off &,; i.e.

Allq-QE q 2k,

2.1
0 g<k,. @1

Sulg) = {

It should be stressed that by considering roughness spectra of the form (1.1} and (2.1) we
actually restrict our study to isotropic curves and surfaces.

From the standpoint of fractal geometry, the most important characteristic of both types
of surfaces is the Hausdorff-Besicovitch, or fractal, dimension D. It has been shown [9, 1]
that the dimension of a type I fractal curve is related solely to the exponent e. This is
done by using the ‘potential’ definition of the fractal dimension [2]. By calculating the
energy of a uniformly charged surface defined over a circular region, the same can easily be
demonstrated for the case of Dt = 2, for both type I and I surfaces. Denoting the excess
of the fractal dimension over the topological dimension by D = D — Dy, the relation which
links the fractal dimension to « can be written in the following unified for both Dy = 1
and Dr = 2 form

D =(Dr+2-a)/2. (2.2)

Clearly 0 < D' < 1 when Dr < o < Dr 4+ 2. For the assumed values of the spectral
exponent, the Fourier transform of §; is a divergent integral; thus, the correlation function
does not exist. Similarly, the RMS height, and therefore, the RMS slope are infinity.
However, the so-called structure, or mean-square increment (MSI), function defined by
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AY(E) = {(L (5o + &) — £(&))?) (the broken brackets denote ensemble average) does exist
and is given by [1]

AE) = PP, 23)

Here £ denotes [x| in the case of Dr = I and [r:| (r. = (x, y}), in the case of Dy = 2.
The important parameter 7, , termed topothesy, is by definition, the distance over which the
Msl function equals 7. The following relationship expresses the topothesy in terms of the
parameters A; and D' (or equivalently in A; and a):

_ A122D'-DT—1I-(DJ)
T w21~ D' D2y

il 2.4)

As we shall see in the next sections, the parameter 7; plays a key role in assessing
the characteristics of the waves that have encountered fractals. At both limiting cases
D' - 0 and D' — | called marginal and extreme fractals, respectively, the topothesy
tends to infinity. Another special case is D’ = %, called, in analogy with the Brownian '
motion, Brownian fractal surfaces, for which (2.3) and (2.4) simplify to A(&) = 1 &,
7, = Ar/m P71, The dependence of 7, upon the dimension D' is graphically illustrated in
[12, 13].

Since the behaviour of Si(g) and Si(g) for large g are identical, the mMsI functions
Ap(E} and An(&) must behave identically at zero, Indeed, calculating the structure function
corresponding to (2.1) (see appendix A) one obtains

Apt§) = fP £ 4+ 287 [1 - Fp, Dr/2; —k252/4)] (2.5)

where 7y is given by the same expression (2.4); hence, thereafter we suppress the subscripts
of the topothesy. Equation (2.5) involves the hypergeometric function ;5; since it is an
entire function, (2.5) defines Ap(§) for arbitrary §. At & — Q, | F; approaches unity and
therefore Ap(§) ~ A(€), as § — 0. Type I spectra have finite RMS height £ and infinite
RMS slope. In terms of the spectral parameters, the RMS height reads

- A“kgw'—l)

As expected s — 00 as k, — 0. Due to high-frequency divergence, the RMS height grows
unbounded as Hausdorff-Besicovitch dimension approaches the extreme fractal case.

After sharp increase for small and intermediate &, type II structure functions approach
2h? at infinity in an oscillatory fashion (the amplitude of the oscillations decrease with
increasing D’). The leading asymptotic term of Ap(§) for large £ is given by

2(1 — D7) | sinka) Dr =1
A ~opt = 27
®) [+ = [W) H {_ e

where J; is the first-order Bessel function. The last expression provides another
characteristic length—the distance which separates the scales of fractality from the scales
of ‘geography’ [10]. From (2.7), the type I structure function is close to 2h* for values of
its argument much greater than L, where

L =27 1=0053(1 — p"@#=Po3p~1 2.8)
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Figure 1. Simplated random fractal profile for parameters: dimension D = 1.25, topothesy
T = 10Ax, rMs height & = 50Ax. The discretization step is Ax = 1 (arbitrary units), the total
number of points is Np = 8182, In (a) the profile is drawn with resolution 100Ax; in (b) with
resolution Ax; in (c} a magnified portion of the surface consisting of the first 200 points is
shown,

Graphs of Ap(€) labelled by different values of the fractal dimension are drawn in [12].

A physically realistic spectrum must also have a smatl-scale cut-off k,. The presence
of such a cut-off makes a surface with a finite domain power-law spectrum an ordinary,
rectifiable [14] surface (when viewed at very fine resolutions). The Hausdorff—Besicovitch
dimension for such surfaces equals the topological dimension, I = Dy. Nonetheless, the
surfaces exhibit an approximate self-similarity over a wide range of horizontal distances
[15]. The Hausdorff-Besicovitch dimension is then substituted by the similarity dimension
Dg [16], whose excess over Dy 15 given to a good approximation by (2.2). Hence, in most of
the cases, the effect of the small-scale cut-off can be minimized by choosing the wavelength
of the incident field well within the self-similarity range. Only when « is close to Dy, the
existence of small-scale cut-off essentially changes the overall self-similar behaviour [15],
and in this case, one should expect essential impact of %y, on the diffractal properties as
well. This impact, however, will not be pursued here.

We conclude this section with illustrations of power-law surface realizations which
provide an insight into the expected diffractal properties. The surfaces are simulated using
an algorithm described in [17, 18] choosing discretization step of Ax = 1 (in arbitrary
units) and total number of points N, = 8192. For the surface in figure 1, we prescribed
D =125 17 = 10Ax, h = 50Ax. In figure 1{a) the surface is drawn with a resolution
of 10z. At this resolotion the fractal surface appears similar to an ordinary, non-fractal
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Figure 2. The same as figure 1, except that D = 1.75 and /& = 20Ax.

surface—see figure 2 in [19]—with an effective slope defined by sy = A2h /L, where L
is given by (2.8). For the parameters of figure 1, 5.y = 0.188. Therefore, when illuminated
by a wave with wavelength A >» T, the returns from a fractal surface should be qualitatively
similar to that of a non-fractal one. In figure 1(5) the same surface is drawn with resolution
0.1r. A great number of new rough patches are seen whose average size is of order of T;
cf with the graphs of the Weierstrass—Mandelbrot fractal function given in [20]. If A < T
the contribution to the scattered power from small scale roughness should be dominant.
The mean slope of this roughness is visibly greater than 0.188, see figure 1(c), in which
a magnified portion consisting of the first 200 points is shown. (We should note, that
the computer realizations actually do have a small-scale cui-off demanded by the Nyquist
frequency, in our case ky, = 7.) On the other hand, according to the predictions of the
geometric optics, the backscattered power from a Gaussian correlated surface with a steep
slope s > /2 +F Dr, exhibits a peak at a certain angle of incidence. Thus, a similar peak
should be expected in the backscatter from a fractal surface power for A < 7.

Figure 2 shows realization of a random fractal surface with the same parameters except
that D = 1.75 and & = 20. In this case, at resolution 10r—figure 2{a)—the effective slope
is 5. = 0.056. However, at resolution 0.11, the fractality scales are rougher—figure 2(b),
and steeper—figure 2(c). Therefore, the maximum of the backscattered power should be
expected at about grazing incidence.
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3. Physical opties approximation

Both classical methods in the theory of scattering by rough surfaces—small perturbations and
Kirchhoff approximations—have been applied to fractal surfaces. The Born approximation
has been used by Po-zen Wong [21] to dertve the asymptotic form of the Fourier transform
of the scatter from porous solids with fractal interface intensity. However, there are no
known criteria for validity of the ordinary perturbation techniques [22, 23] when applied
to scattering from fractal surfaces. As a recent Monte Carlo simulations show [24] even
in the case of single-scale Gaussian correlated one-dimensional surfaces, the requirement
h=kh <1 (k is the wavenumber of the incident field) does not suffice to ensure the
validity of the first-order perturbation approximation. (It must be supplemented with a
certain small-correlation-length condition.)

Since the Kirchhoff approximation is a heuristic rather than an asymptotic method (based
on the local tangent-plane approximation), the question of its applicability for description
of diffractal scattering is even more difficult to address. (It is true that the Kirchhoff
approximation has also been shown to be the zero-order iterative solution of the surface
field integral equation [25, 26]. However, the conditions for convergency of the iterative
series are not known, and morecver, even what parameter should be considered as small for
this expansion depends on the statistical parameters of the surface [27, 28].) To appreciate
the difficuities in defining an appropriate parameter, controlling the accuracy of the Kirchhoff
approximation, the reader may refer to the paper by Thorsos [19] where the widely accepted
criteria—large radius of curvature compared to the wavelength [29]—was tested in Monte
Carlo simulations, again for Gaussian correlations, and found inappropriate. Instead, the
criterion l;or = A has been suggested for all scattering directions away from grazing; leoy
ig the correlation length and A is the wavelength of the incident field. (See also, [28] where
detailed criteria based on a variational correction to the Kirchhoff approximation are derived.
In these criteria l.o /A is involved as a key parameter.} By analogy, one may expect that for
wavelengths of order or less than topothesy the Kirchhoff diffractals, at least qualitatively,
would give a proper picture of the scattering. On the other hand, if the wavelength is muoch
greater than topothesy, the scales of fractality, as we shall see, have negligible effect on the
scattered field. In this case the surface can be regarded as a non-fractal rough surface with
criterton for validity of the Kirchhoff approximation L/A > 1, see equation (2.8).

Let us also note the studies [7] and [30] where the scattering from power-law surfaces
ts considered in the framework of the two-scale model—a combination of physical optics
and perturbation expansion [22]. Finally, the probiem of scattering from type I surfaces for
the particular case of fractal dimension D = 2.25 has recently been treated in an approach
that requires the surface slopes to be small [31].

Before proceeding further, we elaborate on the conditions validating the far (Fraunhofer)
zone approximation adopted throughout this paper. For non-fractal rough surfaces these
conditions are obtained, for example, in [32] and studied in detail in [33). According to
the analysis carried out for fractal surfaces in [34], the source/receiver is located in the far
zone if its distance R from the fractal surface satisfies the condition

D1 ~D")
R> Rg= (| ——— 3.
3> Re=bcosé; (krcosr?,-) (3.1)

where b js the size of the illuminated area and & is the angle of incidence measured
from the vertical, z-axis. Independent of the value of the fractal dimension, the condition
(3.1) is easily satisfied provided A < 2wt cosé;. In the case of longer probing waves, the
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Fraunhofer-type scattering is in effect for surfaces having dimensions for which

In(1/7 cos ;) }_'

In(R/bcos ;) (3.2)

D <« [1 +
where the dimensionless topothesy T = kt is introduced.
Assuming that inequality (3.1) holds, one can make use of the definition of the
dimensionless incoherent scattering cross section per unit area per unit scattered solid angle,
see, for example, {35, 19],

kNP |?4 D q; 2 2
o (ks, ki) = (;) q_ dlrp eltums [exp( A(]'rll)) —exp(—q, hz)] . (3.3)
z

The above expression pertains to a scattering from a surface with infinite extent. The
wavevector of the incident plane wave is k; = k(sin6;, 0, — cos 4;), the direction of the
scattering is determined by k; = k(sinf;cosp,sing;sing, cosds); by definition g =
(g1, 9:) = ki — ks. (We remark that for type I surfaces the second term in the integrand
of (3.3)—that is the coherent part of the intensity—vanishes.) Making use of the isotropy
of the surface, the expression for the scattering cross section is brought to the following
convenient form:

. t§4 cod cos{pu)
7 (ke i)=2@§(E§zIfﬂ')DT"'"D"-[o | oty

=1
x [exp (= 1A@w) — exp ( — 4,°47)] {gTT s (34)
where the (dimensionless) parameters § = g/k, and p = |§.|/({5,1£2)/0~2) are

introduced. The dimensionless type I and type II structure functions are defined by
Ar) = «®172) and Aglu) = u®=20 4 2g202 (1 ~ 1/ (D' = 1; D', Dy/2; —k2u?/4)),
respectively, with k, = k. /(ig,1£2")1/0-21, Equation (3.4) can be numerically implemented
to yield values of o (ky, k) for any set of scattering and surface statistical parameters, except,
as we shall see later, those for which the parameter p is large. For the case of pure fractal
surfaces, however, it is instructive to develop a series representation of the scattering cross
section. This representation, as well as an asymptotic expansion of (3.4) for large p, are
obtained in the next section.

4, Series representations and asymptotic expansions of the scattering cross section

The key to the series representation of o (ky, &) for type I surfaces is the integral

@ | cos{pu} . Dr=1
B{(p, D"; Dr) =f exp ( — 262172 dy 4.1
P h | wdetpw) (-3 ) Dr=2.
Two cases should be distinguished. If ¥ < =, a convergent series is obtained from (4.1)

by simply expanding the oscillatory functmns and integrating term by term. Referring, for
example, to [36] the result is

T(Dr/2) Z -n 2‘“*"’*/2”(‘-”"1“((:1 + D1/2)/(1 = D)) 4

2(1- D)~ 22 01T (n + Dy/2) “-2)

B(p, D'; D7) =



5986 O [ Yordanov and K Ivanova

The case D' > % requires more effort. Let us take, for example, Dy = 2 and consider the
complex integral

f 2H{ (pzyexp[ — 1(2)*172]dz (4.3)
0

with a branch cut along the positive real axis. The integrand of (4.3) involves the first
kind, zero-order Hankel function H"; the values of Z21-2) are defined in such a way that
B(p, D', 2) is obtained by taking the real part of (4.3). Using this, a series representation is
developed by deforming the integration contour to the positive imaginary axis and expanding
the exponent. A similar technique can be applied for topological dimension Dy = 1, render

, Dy
B(p, D': Dr) = —ot
(p T) JEp)>

22 apt (1 = DY [2(1 = D) + Dr/2] sin{nm (1 — D]
x E(-‘) * n1202D'=1) p2n(1=D7)

(4.4)

n=1

which is convergent for D' > % We note, that in a different physical context, a series with
essentially the same structure has been obtained by Berry and Blackwell [9], and also for
the particular case of D' = ‘—i in [31].

In practice, the evaluation of B(p, D'; Dt} from the series representation is limited by
the computer precision. The ‘radivs of effective numerical convergence’ for (4.2) can be
prescribed by

1/(1420) 7 2Znf(1+2n)
pP<p. = (%ﬂ) ( ';':”Min 10) 45)

where n = %— D', and M is the maximum number of digits not rounded off by the computer.
Alternatively, for D' = % +m0<ny< % the series (4.4) converges numerically provided

_(1-=12q o \2n/(-2n)
P2P>"( 2 )(M]nlo) ‘ (4.6)

The series representations are computationally more efficient and reliable than the direct
numerical integration of (3.4), provided the surface dimension is not close to Dy + % If
n <« 1, i.e. the surface is similar to a Brownian fractal, the intervals of convergence are
the narrowest; also the rate of convergence of (4.2) and (4.4) is extremely slow. On the
other hand, for the cases in which (4.2) and (4.4) are nat convergent—i.e. for D' > -% and
D = %, respectively—they represent full asymptotic expansions of B(p, D", Dr). Thus,
in the actual evaluation of the scattering cross section, the representation (4.2) can be used
for small p whilst (4.4) for large p independent of the value of the fractal dimension D.
When B{p, D'; Dy) is calculated from an asymptotic series, the so-called optimal truncation
rule [37] has proved, in our experience, to be always reliable, The absolute errors of the
asymptotic summation are given by

1 1-2 {I-2n}/2n
E(r) = —=exp [-n (.__z.p_’?) } @)
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for equation (4.2), and

(1+2m)/2n
E(n) = 2w exp [,_,7 ( 2p ) :| (4.8)

1427

for equation (4.4). As it is seen from (4.8), for fixed n and large values of p, the emror of
the asymptotic summation is reasonably small allowing the handling of this most difficult
numerical integration case, see below.

The case of pure Brownian fractal curves and surfaces permits an exact quadrature of
(4.1} leading to the following simple expression;

2Dr

(1 4+ 4p2)d+2niz” (*.9)

B{p, 3, Dr} =

We remark that for D' = % both (4.2) and {4.4) can formally be summed up with a result
(4.9).

We now turn to the problems involved in the practical evaluation of (3.4) for type II
surfaces. For this purpose we use numerical quadrature for small and intermediate values of
p. To control the error, we break the interval of integration into subintervals in which the
integrand is either positive or negative. (In the case of Dr = 2, these intervals are defined
by (jo,n, Jon+1)s where jo, and Jjony1 are two consecutive zeroes of the Bessel function Jp.
As is often the case, large numbers of subintervals have to be accounted for; to calculate
Jon for large n, the asymptotic expression for the zeroes has been used [38].) It has been
observed that series generated by the values of the integral over the subintervals behaves,
in general, as an asymptotic series. Hence, the summation is carried out using error control
rules of asymptotic series [37].

With increasing p, the numerical error becomes intolerable. Special difficulties present
the case of extreme fractal surfaces, when the rapid oscillations are imposed on an extremely
slow decrease of the non-oscillating factors in the integrand of (3.4). To handle these cases,
we develop a full asymptotic expansion of o (k;, ki) using p as a large parameter.

When p is large the main contribution to the integral comes from the vicinity of
u = 0. However, no ordinary asymptotic technique can be applied for the estimation
of this contribution. The remedy is a special technique developed in [39]. It employs the
Parseval relation for the Melin transforms of the oscillating and non-oscillating factors of
(3.4). Not presenting the long and rather cumbersome calculations, we write down only
the final expansion. If for some integer M an error less than (p/2)~2*~2¥ is desired, the
asymptotic form of the scattering cross section for large p reads

I (Dr/2)§* Py~Pr o (=1
G =

ki, ki) = ——m——— ;
o (ki ki) 242(1g,122)Pr/0-D \2 =t
9 Alf' A;’ . AYTUDr + w)/2) (f_)-ﬂ
Ok oo <1 k] 'kz' ‘e kN' (m - k] — e kN)' F(""[.L/Z) 2
@.10)
where

(242h%(1 — DYI(Dr/2) (122"
4™

An = D e DDy + 1
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and u = p(m, ki, ... k) = 20 = DYm =k — -+ —kn) + 23 k. The second
summation in (4.10) is over all possible sets of integers &y, ..., ky whose sum is less than
m. Complying with the error bound, the sets &y, ..., &k, for which u > 2(1 — D")M must

be suppressed. Note that the ieading order in (4.10) does not depend on the RMS height and
is identical with the large p leading order for type I surfaces (obtained by accounting for
the term with n = 1 in (4.4) only). Hence, with increaging p the predictions of (3.4) are
insensitive to the value of largest scale.

To conclude this section, we stress that, in our experience, the evaluation of quantities
which characterize the diffractal properties, calls for a carefu! numerical work and often
accounting for pertinent full asymptotic expansions.

5. Backscattered diffractal patterns

We begin our exposé of the properties of the backscattered Kirchhoff diffractals with
the main finding of this work. Figure 3 shows backscattering cross section, og{f)—
equation (3.4) with 6, = —8—as a function of the angle of incidence for three values
of the wavelength, all of them close to the topothesy’s length. The full curves represent
op(8) for type II surfaces with A/L = 1.59, whereas the dotted curves correspond to ‘pure
diffractals’, i.e. with 2/ = 0o. The fractal dimension used to produce the data for figure 1
is D = 2.3. For backscattering, large angles of incidence lead to large values of p, and as
expected, the values of og for type I and type II surfaces merge with increasing 6. The first
two curves are plotted using dimensionless topothesy of £ = 0.2 (z/4 = 0.032} and have
a form which is typical for scattering from non-fractal surfaces: a maxima at & =0 and a
minima as the angle of incidence approaches grazing. When the wavelength is decreased
below a specific value, the backscattered pattern change qualitatively; namely, the curves

2

backscattering cross section
-
1

incidence angle [deg]

Figure 3. Backscattering diffractal patterns for dimension of the surface D = 2.3, The full
curves correspond to type 1i surfaces with dimensionless rms height h = kh = 10, the dotted—
to type 1 surface—Fk = oo, The values of the dimensionless topothesy ¥ = kt used to produce
the different curves are given inside the figure,
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Figore 4. Cosine of fipm versus the dimensionless topothesy for type I surfaces and (a)
Dt = I, () Dr = 2. The graphs correspond to excesses of the fractal dimension of
D' =0.1,02,0.3,04, 0.5, and 0.6, respectively from left to right.

marked with T = 0.32 (v/A = 0.051) exhibit minima at normal and grazing incidence, and
mild maximum at about 8, = 20° for type II surfaces, and at about 8, = 28° for the pure
fractal case. With further decrease of the wavelength the peak becomes more pronounced;
see the pair of curves corresponding to T = 0.6 (r/A = 0.095). We shall refer to this
effect as diversification of the angular diffractal patterns, Thus, within the physical optics
approximation, the scales of fractality manifest themselves (i.e. the scattering is effectively
in the diffractal regime) only if the incident wavelength is sufficiently small. The simulations
and the accompanying discussion presented at the end of section 2, indicate that the latter
may not be an aftermath of the considered approximation. The small impact of the fractality
scales on the propagating wave when the wavelength is large has also been observed in the
problem of transmission trough Cantor-like slab [40]. We emphasize that this latter problem
is treated with no approximation involved.

Since o depends on the topothesy through £~2/0-27 see (3.4), for type I surfaces and
fixed D', the position of the peak is determined by the values of T alone. Figures 4(a)
and 4{b) show cos g versus the dimensionless topothesy 7, for Dy = 1 and Dy = 2,
respectively. The curves correspond to: D' = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively
from left to right. The onset of the curves marks the critical value £, of the dimensionless
topothesy for which the peak occurs. In particular. if D’ « 1 (marginal fractals), using D'
as a small parameter, one obtains

~ 1

COS Bypeak = N 5.1
which is valid to the leading order in D’ and values of Gipeu. away from normal incidence.
The expression (5.1) appears similar to the analogous expression obtained using geometric
optics for a Gaussian correlated surface with a steep RMS slope s, namely, 2" substituted
by 5. However, the physical content of (5.1), being wavelength dependent, is different and

furnishes an experimental possibility for measuring T for marginal fractal surfaces.
Another special case are surfaces with dimension close to that of the Brownian fractal.
Writing D' = 12 + », and using n as a small parameter, for both Dy =1 and Dy =2, one
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Figure 5. Backscattering diffractal patterns for pure fractal surfaces with D = 2.7, The full
curve corresponds to 7 = 0.8, the long dashes to © = 0.9, short dashes to T = 1.2, and the
dotted curve to £ = 1.4,

gets
1
J2ED0=00

This formula is a good approximation oaly for 5 < 0.05; for D' = % it is exact and thus

for Brownian surfaces £, = 1/4/2. Again, the position of the peak depends on the value of
the wavelength.

With increasing D', the interval of £-values for which the peak exists becomes narrower
and eventually disappears. The latter is illustrated in figure 5 where examples of diffractal
angular patterns, type I surfaces are shown for D = 2.7. As we shall see in a moment
the scattering from type I and type II surfaces are practically identical for this dimension.
The full curve is drawn using £ = 0.8, the long dashes represent ¢ = 0.9, short dashes—
f = 1.2, and dotted curve—% = 1.4. For these and higher values of the dimension, the
diversification of the diffractal patterns manifests into a change from curves having maxima
at zero and minima at /2 to curves with reversed extrema.

Finally, we study the quantitative difference between the scattering form type I and type
1T surfaces. As already noted, this difference is negligible for large 6, Figure 6 shows the
rate of decreasing of the relative difference (o] — of)/ol with increasing dimensionless
height, for fixed 8, = 20° and T = 0.4. The dimensions used to produce the curves are
D =12.1,22,23, 2.4, and 2.5; see the corresponding labels inside the figure. It is seen that
the relative difference is significant, in some cases exceeding 100%, for fractal dimensions
not much higher than Dr. With increasing D, (o} — of)/o4 rapidly decreases and for
about D" > 0.4 it becomes negligible. To understand this, at first surprising fact, we rewrite
kZ—see the argument of the hypergeometric function, equation (3.4)—in terms of D', Dr,

@ and h:

CO8 Bipegr, = (5.2)

o _[FOr+1-Dy 1 JH
@ 2122 (D) (D'} cos? g 42 '
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Fipure 6. Relative difference between the backscattering cross section for type 1 and type 1l
sutfaces versus the dimensionless rM$ height for fixed 6; = 20° and £ = 0.4. The various curves
correspond to fixed fractal dimensions; the values of the [atter are given inside the figure.

Since the expression in the brackets is generally < 1, fég <« 1for D' > 0.4. Hence, | F, =1
and Ap(u) = u20-9) within the essential for the integration of (3.4) interval. On the other
hand, if, as is usually the case for small and intermediate 6, h>1 /2cos8; the second
exponent in the integrand of (3.4) is small. Therefore, according to the physical optics
approximation, the scattering from type I and type II surfaces are closely similar for large
and intermediate values of the fractal dimension excess.

6. Conclusions

We have studied some aspects of wave scattering from fractal rough surfaces. This problem
constitutes an important example of so-called diffractal regime in wave theogy [1]. Both pure
fractal, i.e. surfaces having unbounded hierarchy of irregularities, and fractal surfaces with
a largest possible scale have been considered In thc latter case an exact representatjon for
(Km:hhoﬁ) approximation, we have deve]oped an elaborated combination of numerical and
asymptotic technique which allows the evaluation of the incoherent scattering cross section
(a quantity proportional to the second central moment of the scattered field) for any set of
surface and scattering parameters. Using this technigue, we have studied in detail the case
of backscattering only. The emphasis is on the insight which the fractal parameters, such
as dimension and topothesy, provide for analysing the diffractal phenomena

The main finding is an effect of diversification of the angular diffractal patterns which
takes place for wavelengths of the incident field below some critical value. In particular,
the angular dependence of the backscattering cross section exhibits a peak at certain angles
of incidence. The position of this peak and the cntncal wavelength are linked to the fractal
dimension and the topothesy, and if confirmed expenmentally, should furnish a precise
method for measuring these intrinsic parameters of natural and man-made rough surfaces.
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The peak occurs for fractal dimensions up to about 2.65; above this value, when the diffractal
regime is in effect, the backscattered intensity has a maximum close to grazing incidence.,

We have also quantified the impact which the largest scale of the surface has on the
diffractal properties. For large angles of incidence this impact is negligible. For small
and intermediate angles the effect is important only for relatively small excess of the fractal
dimension over the topological one and decreases with increasing RMS height of the surface.

Acknowledgments

The authors thank N I Nickolaev for providing the simulation data used for figures 1 and
2, and for helpful discussions. This work was supported by Bulgarian Ministry of Science
and Education, code F4.

Appendix. Type II mean-square increment function

In this appendix we sketch the steps leading toward expression (2.5). The derivation is
based on the spectral representation of the MSI function [41]:

_ * _ a—ifrry dDTk-L
mm—d;ﬂe )wmmﬁ. (AI)

Substituting (2.1) in (Al) (and employing polar coordinates for Dr = 2), (Al) can be
brought to the following form:

2-Prgp (@ o [ 1—cos(aé) Or=1
A = — k dk A2
== |, 1 - Jy(ked) Dr=2 2

where £ s either |x| or |ry|. Next, the integral in (A2) is represented as [, = [i° — A

The first of these integrals is a representation of the Ms1 function for the pure fractal case;
hence, it gives Aj(§)—equation (2.3). The second integral is treated in the following
manner: the oscillatory functions in the integrand are expanded in powers of k,§ and the
resulting series are integrated term-by-term; using the properties of the gamma function and
the definition of the hypergeometric function, Ay (£) can be rearranged in the form of (2.5).

References

[1] Berry M V 1979 J. Phys. A: Math. Gen, 12 781

[2] Mandelbrot B B 1977 Fractafs (San Francisco: Freeman)

[3] Pietronero L and Tosatti E (eds) 1986 Fractals in Physics Amsterdam: North-Holland

[4] Sayles R S and Thomas T R 1978 Nature 271 431

Besry M V and Haanay Y H 1978 Nature 273 573

{5} Pierson W J and Moskowitz L 1964 J. Geophys. Res. 69 5181

[6] Bell T H 1978 Deep-Sea Res. A 26 65

[7]1 Fuks I M 1983 Radivphys. Quantum Electron. 26 865

[8] Ma Zhenyi er af 1991 J. Mat. Res. 6 183

(91 Orey S 1970 2. Wahkrsch'theorie verw. Geb. 15 249
[10] Berry M V and Blackwell T M 1981 J. Phys. A: Math. Gen. 14 3101
[11] Jakeman E 1982 J. Phys. A: Math. Gen. 15 L55



{12]

[13]
f14]
[13]
{16}
{17]
(18]
[19]
[20]
21
[22]
(23]
[24]
[25)
[26]
271

(28]
[29]

[20
[31]
[32]

£33]
{34]

(35]
(36]
(37

(38]
(39

[40]
f41]

Kirchhoff diffractals 5993

Yordanov O 1 1990 Proc. Gth Inz. School an Microwave Physics and Technique (Varna) ed A 'Y Spasov and
M B Tsankov (Singapore: World Scientific) p 162

Glazman R E and Weichman P B 1989 /. Geophys. Res. 94 4998

Falconer K J 1985 The Geametry of Fractal Sets {Cambridge: Cambridge University Press)

Yordanov O T and Nickolasy N [ 1994 Phys. Rev. E 49 R2517

Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman)

Osborme A R and Provinzaie A 1989 Physica 35D 357

Greis N P and Greenside H § 1991 Phys. Rev. A 44 2324

Thorsos E 1 1988 J. Acouse. Soc. Am. 83 78

Berry M V and Lewis Z V 1980 Proc. R. Soc. A 370 459

Po-zen Wong 1985 Phys. Rev. B 32 7417

Bass F G and Fuks I M 979 Wave Scattering from Statistically Rough Surfaces {New York: Pergamon)

Jackson D, Winebrenner D P and Ishimaru A 1988 /. Acoust. Soc. Am. 83 961

Thorsos B [ and Jackson D R 1989 J. Acoust. Sec. Am. 86 261

Maue A W 1949 Z, Phys, 126 601

Meecham W C 1956 J. Rar. Mech. Anal. 5 323

Belobrov A ¥ and Fuks I M 1985 Sov. Phys. Acoust. 31 442

Rodriguez E [98% Radio Sci. 24 681

Ivanova K and Broschat § L 1993 J. Acoust. Soc. Am. 94 2326

Yordanov O [, Ivanova K and Michalev M A 1991 J. Acoust. Soc. Am. 89 2104

Lynch P I 1970 J. Acoust. Soc, Am. 47 804

Shinelev A B 1972 Soviet Phys. Usp. 15 173

Ogilvy § A 1987 Rep. Prog. Phys. 50 1333

Jackson D R, Winebrenner D P and Ishimaru A 1986 7. Acoust. Soc. Am. 79 1410

Dashen R, Henyey F § and Wurmser D 1990 J. Acoust. Soc. Am. 88 310

Kravizov Yu A, Fuks I M and Shmelev A B 1971 Jzv. Wsskih, Uchebnih, Zavedenia Radiofizika 14 854

Lysanov Y P 1971 Soviet Phys. Acoust. 17 14

Yordanov O I and Michalev M A 1989 J. Opr. Soc. Am. A 6 1578

Yordanov O I and Stoyanov O 1989 Proc. LRS! Int. Symp. on EM Theory (Srockhoim) (Stockholm: The
Royal Institute of Technology) p 512

Ishimaru A 1978 Wave Propagation and Scattering in Random Media (New York: Academic Press)

Prudnikov A P, Brichkov Yu A and Marichev O 1 1986 Jnrzgrals and Series (New York: Gordon and Breach)

Bender C M and Orszag § A 1978 Advanced Mathematical Methods for Scientists and Engineers (New
York: McGraw-Hill)

Abramowitz M and Stegun [ A 1970 Haendbook of Mathematical Functions (New York: Dover)

Handelsman R A and Lew J S 1969 Arch. Rational. Mach. Anal. 35 382

Bleistein N 1977 SIAM J. Math. Anal. § 655

Soni K 1980 SIAM J. Math, Anal 11 828

Konotop ¥ V, Yordanov O [ and Yurkevich [ V 1990 Europfiys. Lerr, 12 481

Panchev 8 1971 Random Functions and Turbulence (Oxford: Pergamon)



